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Abstract: Chronic kidney disease (CKD) is a progressive condition affecting over 12% of the global population and can lead 

to end-stage renal disease (ESRD) if not managed effectively. Early prediction of renal failure in CKD patients is crucial for 

timely intervention, which can slow or prevent disease progression and reduce the need for costly treatments like dialysis or 

transplantation. However, traditional diagnostic methods, such as serum creatinine tests and nuclear imaging, often lack 

precision and are invasive. This paper examines the application of optimized deep learning models, particularly those utilizing 

computed tomography (CT) imaging, for the early detection of renal failure. Key approaches include AI-assisted segmentation 

of renal-enhanced CT images and advanced models like YOLOv8, which have shown promise in accurately identifying kidney 

abnormalities and assessing risks. By leveraging these cutting-edge technologies, the goal is to improve early detection, 

enhance patient outcomes, and reduce healthcare costs, addressing the global burden of CKD. The proposed YOLOv8 model 

obtained a precision up to 0.986, recall up to 0.969, mAP50 up to 0.989, and mAP50-95 up to 0.972 across BOX and MASK 

predictions. 
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Chronic kidney disease (CKD) is a progressive condition characterized by the gradual loss of kidney function over time, 

affecting millions of individuals worldwide. The kidneys play a crucial role in maintaining homeostasis by filtering waste 

products from the blood, regulating fluid and electrolyte balance, and producing hormones vital for various bodily functions. 

When kidney function declines, it can lead to a myriad of health complications, ultimately culminating in end-stage renal 

disease (ESRD), which necessitates costly interventions such as dialysis or kidney transplantation. The significance of early 

prediction and detection of renal failure in CKD patients cannot be overstated, as timely interventions can significantly improve 

patient outcomes and mitigate the escalating burden on healthcare systems [11]. The World Health Organization (WHO) has 

recognized CKD as a major global health issue, with prevalence rates estimated to be over 12% in the general population. The 

condition is particularly concerning as it often remains asymptomatic in its early stages, leading to delayed diagnosis and 

treatment [12]. Significant kidney damage may have already occurred when symptoms such as fatigue, swelling, and changes 

in urine output become evident [13]. This progression emphasizes the urgent need for effective early detection strategies that 

can identify individuals at risk of deteriorating kidney function before severe complications arise [14]. 

 

One of the primary challenges in managing CKD is its heterogeneous nature; the disease can stem from various etiologies, 

including diabetes mellitus, hypertension, glomerulonephritis, and polycystic kidney disease, among others [15]. This 

variability complicates the diagnostic process, as each underlying cause may require a distinct therapeutic approach. Traditional 

methods for assessing kidney function primarily involve serum creatinine measurements, which, while widely used, have 

limitations [16]. Creatinine levels can be influenced by several factors, including muscle mass and diet, leading to potential 

misinterpretations of renal function. Moreover, these tests are not sensitive enough to detect early declines in kidney function, 

often resulting in late-stage diagnosis [17]. To address these challenges, recent advancements in medical imaging and artificial 

intelligence (AI) have emerged as promising avenues for enhancing the early prediction and detection of renal failure in CKD 

patients. The advent of non-invasive imaging techniques, such as computed tomography (CT) and magnetic resonance imaging 

(MRI), allows for detailed kidney structure and function visualization [18]. AI-driven analysis of these images can significantly 

improve diagnostic accuracy by identifying subtle abnormalities that may not be discernible to the human eye [19]. For instance, 

deep learning algorithms have been developed to automate the segmentation of renal structures in CT images, facilitating the 

measurement of renal volume and other critical parameters that can provide insights into kidney health [20]. 

 

The integration of AI into medical imaging is particularly advantageous due to its capacity to process vast amounts of data 

quickly and accurately [21]. Machine learning models can be trained on large datasets to recognize patterns associated with 

renal abnormalities, ultimately leading to enhanced predictive capabilities [22]. For example, algorithms such as YOLOv8 (You 

Only Look Once) have demonstrated effectiveness in real-time object detection and classification tasks, making them suitable 

for analyzing medical images [23]. By applying these advanced models to renal imaging, healthcare providers can obtain crucial 

information regarding the presence of tumours, cysts, or other anomalies that may indicate a decline in kidney function. In 

addition to improving diagnostic accuracy, AI technologies can facilitate estimating the glomerular filtration rate (GFR), a key 

indicator of kidney function [24]. GFR quantifies the volume of blood filtered by the kidneys per minute and is traditionally 

measured using invasive techniques or calculated from serum creatinine levels [25]. Recent studies have shown that AI models 

can estimate GFR more accurately by analyzing renal volume and other imaging characteristics, thus providing a non-invasive 

alternative that enhances patient comfort and reduces healthcare costs [26]. 

 

The early prediction of renal failure in patients with CKD is vital, as it enables healthcare providers to implement timely 

interventions that can slow disease progression [27]. For example, lifestyle modifications, such as dietary changes and increased 

physical activity, can be prescribed based on individual risk profiles identified through advanced imaging and AI analysis [28]. 

Furthermore, pharmacological treatments can be tailored to target specific underlying causes of CKD, optimizing therapeutic 

outcomes [29]. By identifying high-risk patients early, healthcare systems can reduce the incidence of ESRD, thereby lessening 

the financial burden associated with dialysis and transplantation, which are often necessitated when CKD reaches its final stages 

[30]. Moreover, the emphasis on early detection aligns with the broader goals of public health initiatives to improve population 

health and reduce healthcare disparities [31]. CKD disproportionately affects certain populations, including older adults and 

individuals with comorbid conditions such as diabetes and hypertension [32]. Healthcare providers can improve access to timely 

interventions for vulnerable populations by implementing targeted screening programs and leveraging AI-driven technologies, 

ultimately enhancing health equity [33]. 

 

Despite the promising potential of AI and advanced imaging techniques in the early detection of renal failure, several challenges 

remain. One significant hurdle is the robust validation of these technologies in diverse clinical settings [34]. While initial studies 

demonstrate encouraging results, further research is necessary to establish the generalizability and reliability of AI algorithms 

across different populations and imaging modalities [35]. Additionally, integrating these technologies into clinical workflows 

poses logistical challenges, requiring collaboration among radiologists, nephrologists, and data scientists to ensure seamless 

implementation [36]. The early prediction of renal failure and the management of chronic kidney disease represent critical areas 

of focus in contemporary healthcare. As CKD continues to impact a significant portion of the global population, innovative 

solutions leveraging medical imaging and artificial intelligence advancements are essential for improving patient outcomes 
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[37]. By enhancing diagnostic accuracy, enabling timely interventions, and addressing healthcare disparities, these technologies 

can potentially transform the landscape of kidney disease management [38]. Continued research and collaboration among 

healthcare professionals, technologists, and policymakers will be vital in realizing the full benefits of these innovations, 

ultimately paving the way for a future where the burden of chronic kidney disease is significantly reduced. 

 

2. Literature Review 

 

Luo et al. [1] emphasize the urgent need for effective early detection methods for chronic kidney disease (CKD), which affects 

over 12% of the global population. Despite advancements in renal replacement therapy since the 1960s, which have prolonged 

the lives of patients with end-stage renal disease (ESRD), the treatment remains prohibitively expensive, with the number of 

recipients expected to reach 5.4 million by 2030. CKD’s inconspicuous symptoms and infrequent physical ex-aminations often 

lead to late diagnoses. While the estimated glomerular filtration rate (eGFR) is a critical measure of kidney function, its reliance 

on invasive serum creatinine (SCR) testing and lack of precision hinder early detection. However, advances in medical imaging 

technology provide promising alternatives, with AI and radiomics significantly enhancing lesion recognition and segmentation. 

Renal fibrosis, a key factor in CKD progression, can be detected through texture analysis, revealing structural changes in renal 

tissue. Recent studies demonstrate the potential of MRI-based texture analysis in identifying early-stage renal injury and 

correlating with Scr levels. This study focuses on developing an AI-based automatic segmentation model utilizing renal-

enhanced computed tomography (CT) images for quantitative CKD assessment, facilitating clinicians’ efforts in early detection, 

diagnosis, and treatment of CKD through accurate renal function evaluation. 

 

Herts et al. [2] present a study aiming to develop a model for estimating glomerular filtration rate (GFR) in healthy individuals, 

such as renal transplant donors, using renal volume measurements derived from multidetector computed tomographic (CT) 

scans along with serum creatinine levels, height, weight, race, and age. The study compares this model’s performance with the 

Modification of Diet in Renal Disease (MDRD) equation. Conducted as a retrospective study, it included data from 244 

individuals who underwent renal donor evaluation over two years. An automated segmentation algorithm was utilized to 

measure renal parenchymal volume from CT images, while GFR was measured using the urinary clearance of iodine 125 (125I) 

iothalamate. The model was developed using analysis of covariance with significant variables such as renal volume, age, serum 

creatinine level, and weight, which strongly correlated with GFR measured using 125I-iothalamate clearance. In contrast, sex, 

race, and height did not correlate significantly. The resulting model positively correlated with the GFR measured by 125I- 

iothalamate clearance and outperformed the MDRD equation in all six measurements. Consequently, this renal volume-based 

model provides a reliable alternative for estimating donor GFR from CT scans, reducing the need for invasive 125I- iothalamate 

clearance methods. 

 

Sasikaladevi and Revathi [3] approach the early and automatic detection of chronic kidney diseases (CKD) using deep learning 

techniques applied to CT scan images. The study focuses on diagnosing prevalent kidney conditions such as stones, cysts, and 

tumours. It utilizes a dataset comprising 12,446 unique CT images, categorized into cysts (3,709 images), normal kidneys 

(5,077 images), stones (1,377 images), and tumours (2,283 images). The methodology involves extracting deep features from 

these images and constructing hypergraphs, which are then used in a Hypergraph Convolutional Neural Network (HCNN) for 

representational learning. The proposed model achieved a superior validation accuracy of 99.71%, outperforming other state-

of-the-art algorithms. This robust digital-twin framework for kidney disease diagnosis aids nephrologists in better prognosis of 

renal abnormalities and demonstrates the potential of deep learning in healthcare diagnostics. 

 

Correa-Medero et al. [4] investigate whether differential kidney function, traditionally assessed through nuclear medical 

imaging, can be effectively evaluated using contrast-enhanced CT scans combined with deep learning and radiomic features. 

The study analyzed data from patients who underwent kidney nuclear scanning at Mayo Clinic sites between 2018 and 2022, 

using CT scans per-formed within three months of the nuclear scans, excluding those who had urological or radio-logical 

interventions during this period. A segmentation model was employed to analyze both kidneys, extracting 2D and 3D radiomic 

features to predict differential kidney function. The study utilized 1,159 cases from Arizona and Rochester as the internal 

dataset and 39 cases from Florida as the external test set. A random forest model using 3D delta radiomics features demonstrated 

promising results, achieving an area under the curve (AUC) of 0.85 for the internal and 0.81 for the external datasets. The 

model showed specificity and sensitivity of 0.84 and 0.68 for the internal and 0.70 and 0.65 for the external set. The study 

concludes that this automated approach can derive important differential kidney function information from CT scans, 

potentially reducing the need for expensive and radioactive nuclear medicine scans in early-stage assessments. 

 

Pallab et al. [5] emphasize the growing role of machine learning in the healthcare industry, particularly for detecting and 

predicting kidney abnormalities (KA), which are becoming increasingly common in Bangladesh. This rise in kidney-related 

health issues is exacerbated by inadequate information and poor lifestyle choices, highlighting an urgent need for effective 

methods to monitor kidney health. To address this public health concern, the Kidney Abnormality, Monitoring, and Analytics 

(KAMA) project aims to develop an advanced machine learning system capable of quickly and accurately identifying kidney 
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conditions and distinguishing between normal and abnormal states. This study divided the dataset into training and testing 

subsets to ensure precise identification of kidney abnormalities. The models employed, Google Net and a custom-designed 

Convolutional Neural Network (CNN), delivered the most promising results for this task, demonstrating the potential of 

machine learning in enhancing kidney health diagnostics. 

 

Wang et al. [6] identify preoperative predictors of aggressive pathology in cT1 solid renal cell carcinoma (RCC) by integrating 

clinical features with qualitative and quantitative CT parameters and developing a nomogram model for prediction. In a 

retrospective study of 776 cT1 RCC patients who underwent partial or radical nephrectomy between 2018 and 2022, significant 

predictors of aggressive pathology included neutrophil-to-lymphocyte ratio, distance to the collecting system, CT necro-sis, 

tumour margin irregularity, peritumoral neovascularity, and RER-NP. The study utilized four-phase contrast-enhanced CT 

scans and logistic regression to build a nomogram, demonstrating an area under the curve (AUC) of 0.854 in ROC analysis. 

This nomogram model effectively predicts aggressive pathology and aids in treatment and follow-up decisions. 

 

Pande and Agarwal [7] emphasize that impaired renal function poses a significant health challenge, especially given the global 

shortage of nephrologists. This shortage has increased demand for AI-driven systems that can autonomously detect kidney 

abnormalities. The study introduces a deep learning model, YOLOv8, designed to identify kidney diseases such as stones, cysts, 

and tumours from a dataset of 12,446 CT images. The dataset, sourced from hospitals in Dhaka, is categorized into four groups: 

cyst, tumour, stone, and normal. The YOLOv8 model achieved an accuracy of 82.52%, a precision of 85.76%, a recall of 

75.28%, an F1 score of 75.72%, and a specificity of 93.12%, outperforming traditional diagnostic methods. The study highlights 

the model’s potential in enhancing the early detection and management of chronic kidney disease, providing valuable support 

to healthcare providers, and improving patient outcomes. 

 

Zheng et al. [8] present UroAngel, a deep learning-based system specifically developed for the non-invasive prediction of 

single-kidney function levels in patients with obstructive nephropathy (ON). The system employs a 3D U-Net model to segment 

renal parenchyma from CT urography images and uses logistic regression for classifying renal function. In a retrospective 

analysis involving 520 ON patients, UroAngel demonstrated a high accuracy of 0.918 in predicting renal function stages. This 

performance surpassed the Modification of Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) equations and two expert radiologists within a validation cohort of 40 ON patients. With a Dice 

similarity coefficient of 0.861 for renal cortex segmentation, UroAngel offers a reliable and non-invasive approach to assessing 

single-kidney function, showcasing its potential to improve clinical decision-making in the management of ON. 

 

Zhang et al. [9] outline a deep learning pipeline for kidney disease diagnosis, starting with acquiring large, high-quality medical 

image datasets from diverse sources to ensure accuracy and reduce bias. The next step is data preprocessing, which involves 

techniques like noise reduction, normalization, and augmentation to improve model performance and prevent overfitting. 

Accurate data labelling is crucial for supervised learning tasks. The model development phase includes selecting appropriate 

architectures, such as U-Net for segmentation or ResNet for classification and optimizing the model through weight adjustments 

and hyperparameter tuning. During the model evaluation, metrics like accuracy, precision, F1-score, and Dice coefficient are 

used to assess the model’s effectiveness. Deep learning applications in kidney disease range from automated segmentation of 

renal tumours and structures to differential diagnosis and grading of renal masses, highlighting its potential to improve 

diagnostic accuracy and treatment planning. 

 

He et al. [10] developed an interactive, non-invasive AI system to predict the malignancy risk in cystic renal lesions (CRLs). 

Through a multicenter retrospective study involving 715 patients, they introduced a geodesic-based 3D segmentation model 

for CRL segmentation and a classification model based on the Spatial Encoder Temporal Decoder (SETD) architecture. The 

classification model utilized a 3D-ResNet50 network to extract spatial features and a gated recurrent unit (GRU) network to 

decode temporal features from multi-phase CT images. The segmentation model’s performance was measured by sensitivity, 

specificity, intersection over union (IOU), and Dice similarity. In contrast, the classification model was assessed using the area 

under the receiver operating characteristic curve (AUC), accuracy, and decision curve analysis (DCA). The models 

demonstrated strong performance in both validation (AUC = 0.973, ACC = 0.916, Dice = 0.847, IOU = 0.743, SEN = 0.840, 

SPE = 1.000) and testing datasets (AUC = 0.998, ACC = 0.988, Dice = 0.861, IOU = 0.762, SEN = 0.876, SPE = 1.000). This 

study emphasizes the AI system’s capability to accurately distinguish between benign and malignant CRLs, thereby improving 

clinical decision-making and potentially reducing unnecessary follow-ups and overtreatment. 

 

3. Methodology 

 

The methodology for addressing kidney disease and renal failure leverages advanced medical imaging analysis through the 

YOLOv8 model, a state-of-the-art real-time object detection system. This model is designed to detect, classify, and accurately 

localize kidney anomalies within medical images, providing detailed insights into their size, shape, and location. We utilize an 

extensive dataset of over 2000 meticulously labelled kidney scans, ensuring rigorous training and validation of the model. 
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Throughout the development process, we rigorously validate the model’s accuracy and performance using this dataset, 

including testing real-world patient data to ensure consistent and precise results [39]. One of the key advantages of the proposed 

approach is its real-time detection and localization capabilities, which empower healthcare professionals with timely, actionable 

information. This enables swift and informed decision-making, particularly crucial in critical healthcare scenarios. Figure 1 

shows the Functional block diagram of YOLOv8 for Renal Failure Detection. 

 

 
 

Figure 1: Functional block diagram of YOLOv8 for Renal Failure Detection 

 

The YOLOv8 model is a real-time object detection system for identifying, classifying, and pinpointing kidney anomalies or 

lesions in medical images. YOLOv8 is known for its ability to accurately detect objects within images, making it well-suited 

for detailed analysis of kidney scans, including determining the size, shape, and location of anomalies [40]. A comprehensive 

dataset of over 2382 kidney scan images is utilized to train and validate the proposed model. Many of these samples are sourced 

from Indian healthcare institutions, ensuring that the model is attuned to the specific characteristics of the local population. 

Each image in this dataset is meticulously labelled by experts, providing a robust foundation for the model’s learning process. 

 

 

 
 

Figure 2: Sample Data from the Dataset 
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The YOLOv8 model is the central component of our system, processing medical images to detect and localize kidney 

anomalies. The YOLOv8 model undergoes thorough training and validation with this labelled dataset, enhancing its ability to 

accurately identify and localize kidney anomalies. The system generates detailed reports that offer healthcare professionals 

critical insights into the identified anomalies, supporting informed decision-making in diagnosis and treatment. The 

performance of the model is evaluated using the test data. The YOLOv8 model produces reliable results. A key advantage of 

this approach is the model’s capability for real-time detection and localization of kidney anomalies, which provides healthcare 

professionals with timely and actionable information crucial for making quick decisions in urgent clinical situations. 

 

A large dataset of 1743 CT scan images of the kidney is collected, annotated for cysts, stones, and tumours and preprocessed 

and augmented to generate 2382 images. The dataset is then split into the ratio 7:2:1 for valid training and testing. Figure 2 

shows the samples from the dataset. 

 

 
 

Figure 3: YOLO v8 architecture 

 

Figure 3 shows the YOLOv8 architecture. The YOLOv8 incorporates several key components: the backbone, CSPDarknet53, 

provides a robust feature extraction framework to enhance the model’s object identification and classification capabilities. 

Utilizing PANet (Path Aggregation Network), the neck improves model performance by aggregating information from different 

layers. Finally, the head processes the feature maps from the backbone and neck to generate predictions, including bounding 

boxes, objectness scores, and class probabilities for the objects within the input image. CSP Bottleneck with 2 convolutions 

and Feature Fusion (C2f) - The C2f module is crucial in improving gradient flow throughout the network. It integrates two 

parallel branches, enhancing information exchange between layers, which is essential for maintaining the model’s performance 

and accuracy. 

 

Spatial Pyramid Pooling Fusion (SPPF) - The SPPF module is responsible for spatially segmenting the input data into various 

regions and independently pooling features from each segment. This enables the model to recognize objects of different scales 

and sizes within the images. YOLOv8 is an object detection model that performs instance segmentation. It localizes and 

identifies each object instance in an image. The output of the YOLOv8 segmentation model includes several critical components 

that provide detailed information about the detected objects. First, the model predicts the number of masks with bounding 

boxes, indicating the number of detected anomalies. For each box, the model provides the coordinates of the x and y values, 

precisely defining the location of the detected region within the image. Additionally, the output includes the area of the object 

in square pixels, offering insights into the anomaly’s size and the perimeter of the object in pixels, which outlines the shape. 

The model also generates mask weights, which contribute to the accuracy of the segmentation, along with class confidences 

that quantify the certainty of the classification for each detected object. 

 

Transfer learning, a valuable technique for quickly retraining a model on fresh data without retraining the entire network, was 

used to train this model. This provides for quicker training times and uses fewer resources than standard training. The predicted 

and true values ratio is calculated during the iteration using the loss function. The Total Loss function is expressed in Equation 

1 [41]. 
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𝐿𝑇𝑜𝑡 =  𝐿𝑐𝑙 + 𝐿𝑐𝑛 + 𝐿𝑏𝑜  ………. . (1) 

 

Where LT is the total loss, Lclss is represented as a classification loss and expressed in equation 2. Lcnf is denoted as confidence 

loss and expressed in equation 3, and L_box is the bounding box loss [41]. 

 

𝐿𝑐𝑙 =  ∑ 𝑋𝑖
𝑜𝑏𝑥2

𝑖=0 ∑ [(𝑃𝑖(𝑒) − 𝑃�̂� (𝑒))2]𝑅
𝑗=0 ………….(2) 

 

𝐿𝑐𝑛𝑓 =  ∑ ∑ 𝑋𝑖
𝑜𝑏[(𝐸𝑖 − 𝐸�̂�)2]𝑅

𝑗=0
𝑥2

𝑖=0 +  𝛽
𝑛𝑜𝑜𝑏

∑ ∑ 𝑋𝑖
𝑛𝑜𝑜𝑏[(𝐸𝑖 − 𝐸�̂�)2]𝑅

𝑗=0
𝑥2

𝑖=0 …….(3) 

 

Where Pi(e) is denoted as a probability to be an object. X_i^ob and X_i^noob are represented as the indicator function. Ei is 

denoted as the objectness [41]. 

 

The performance of the YOLOv8 model is determined using various parameters like Precision, Recall, F1-score, and 

Prediction time. The various parameters are expressed in equations 4, 5, and 6 [41]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
          …. (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
        …. (5) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
              …. (6) 

 

4. Results and Discussion 

 

The CT scan dataset is used to train and test the YOLOv8 model. Using AdamW optimizer, a six-teen-batch deep learning-

based Renal Cyst, Stone, and Tumor detection model is trained. AdamW has a learning rate of 0.001429 momentum of 0.9 

with parameter groups 66 weight (decay=0.0), 77 weights (decay=0.0005), and 76 biases (decay=0.0). The YOLOv58 proposed 

model is trained using a transfer learning technique from the COCO128 dataset with pre-trained weights. The proposed 

YOLOv8 model is a lightweight and time-efficient detecting model with high precision. Table 1 lists the performance metrics 

of the YOLOv8 Model [41]. 

 

At Epoch 10, the model demonstrated promising results with high precision, recall, and mAP scores, indicating its early 

potential for accurate object detection. As training progressed, performance significantly improved at Epoch 50, further refining 

the model’s ability to detect and localize objects accurately. At Epoch 100, it consistently maintained high precision, recall, 

and mAP scores across various IOU thresholds, showcasing its reliability and robustness. Finally, at Epoch 200, the model 

exhibited remarkable performance with consistently high precision, recall, and mAP scores, underscoring its accuracy and 

effectiveness in detecting and localizing objects. 

 

Table 1: Performance metrics of the YOLOv8 Model 

 

Epochs BOX MASK 

Precision Recall mAP50 mAP50-95 Precision Recall mAP50 mAP50-95 

10 0.935 0.886 0.944 0.872 0.935 0.886 0.945 0.845 

50 0.981 0.958 0.982 0.955 0.977 0.954 0.981 0.922 

100 0.981 0.969 0.989 0.972 0.978 0.967 0.987 0.94 

200 0.986 0.962 0.985 0.97 0.986 0.962 0.986 0.945 

 

YOLOv8 offers a comprehensive suite of segmentation models (nano, small, medium, large, and extra-large), catering to 

various performance requirements. The pre-trained weights from the COCO dataset are used to train the YOLOv8 models. The 

training and testing phases employ the customized dataset. The AdamW optimization approach is used to improve the training 

model. With a batch size of 16, the model has been trained for different models of YOLOv8 for 200 epochs. The YOLOv8 

model shows high performance across BOX and MASK predictions, with precision reaching up to 0.986, recall up to 0.969, 

mAP50 up to 0.989, and mAP50-95 up to 0.972 after 200 epochs. Table 2 lists the performance metrics across various YOLOv8 

Models. 
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Table 2: Average prediction speed across YOLOv8 models 

 

Yolo 

model 

BOX MASK 

Precision Recall mAP50 mAP50-95 Precision Recall mAP50 mAP50-95 

Nano 0.935 0.886 0.944 0.872 0.935 0.886 0.945 0.845 

Small 0.948 0.917 0.961 0.891 0.948 0.917 0.962 0.872 

Medium 0.944 0.912 0.955 0.883 0.948 0.915 0.961 0.869 

Large 0.932 0.881 0.951 0.876 0.932 0.881 0.951 0.858 

Extra large 0.919 00.897 0.949 0.889 0.915 0.899 0.955 0.864 

 

In comparing the five versions of YOLOv8 architecture models, notable variations are observed in their performance metrics 

and speed. The metrics, including precision, box recall, mAP50, and mAP50-95, provide insights into the model’s object 

detection accuracy, while speed indicates its computational efficiency. Among the configurations, the “Nano” model 

demonstrates a strong balance between speed and accuracy, making it a compelling choice. It achieves high precision and recall 

values, indicating an ability to detect objects accurately. Additionally, the mAP50 and mAP50-95 scores are competitive, 

reflecting robust object recognition capability across a range of IoU thresh-olds. Table 3 Lists the average prediction speed 

across YOLOv8 Models. 

 

Table 3: Average prediction speed across YOLOv8 models 

 

Yolo model Preprocess (ms) Inference (ms) Post-process (ms) Total (ms) 

Nano 1.8 2.5 2.7 8.0 

Small 0.5 6.9 4.6 12.0 

Medium 0.4 13.4 6.0 19.8 

Large 0.5 20.6 3.3 24.4 

Extra large 0.3 33.2 3.4 36.9 

 

Furthermore, the “Nano” model offers a remarkable speed advantage, balancing computational efficiency and accuracy. This 

model is well-suited for real-time or resource-constrained applications, where speed and accuracy are crucial factors. As a 

result, the “Nano” model is the preferred choice as it provides a favourable trade-off between speed and accuracy, making it an 

excellent candidate for a wide range of practical applications. In this study, we evaluated the performance of an object detection 

model on a dataset of 270 images. The model was trained for 10, 50, 100 and 200 epochs and achieved the following results. 

 

 
 

Figure 4: Confusion Matrix of Image Model. 
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Figure 4 shows the confusion matrix of the Yolov8 Model. The confusion matrix indicates that the model performs well in 

detecting kidney anomalies, with a high true positive rate across cysts, stones, and tumours. Specifically, it correctly identifies 

stones with a 0.97 accuracy, cysts with a 0.93 accuracy, and tumours with a 0.91 accuracy. However, there are some 

misclassifications: cysts are occasionally misclassified as tumours (0.07), and there are minor confusions between cysts and 

stones (0.02) and between stones and tumours (0.02). Overall, the model shows robust performance, though it could benefit 

from further refinement to reduce the low but notable misclassification rates, especially between cysts and tumours. 

 

 
                  

(a) Precision-confidence curve                                               (b) Recall--confidence curve 

 

 

Figure 5: Performance curve of YOLOv8  

 

Figure 5 Performance curve (a) Precision-confidence curve, (b) Recall--confidence curve. The precision confidence curve for 

renal failure detection plots precision (the proportion of true positive pre-dictions among all positive predictions) against various 

thresholds, along with confidence intervals that reflect the reliability of these precision estimates. This curve helps assess how 

accurately the model makes positive predictions across different thresholds. By incorporating confidence intervals, you gain 

insight into precision values’ consistency and statistical reliability, which is crucial for evaluating how well the model avoids 

false positives. A curve with narrow confidence intervals around high precision values indicates a robust model performance 

with reliable detection of true positives. 

 

 
 

Figure 6: Loss curve of YOLOv8 

 

On the other hand, the recall confidence curve plots recall (the proportion of actual positives correctly identified) against varying 

thresholds, accompanied by confidence intervals to show the reliability of recall estimates. This curve helps you understand the 

model’s effectiveness in detecting all relevant positive instances across different thresholds. Narrow confidence intervals 

around high recall values suggest consistent and reliable performance in identifying true positives. Together, these curves allow 

you to balance precision and recall according to clinical needs, ensuring effective and dependable renal anomaly detection 
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while guiding optimal threshold selection based on performance reliability. Figure 6 illustrates the loss curve of YOLOv8. The 

overall loss curve for renal failure detection tracks the model’s loss function over training epochs, with the loss value plotted 

on the y-axis and epochs on the x-axis. A well-behaved curve should show a downward trend, indicating that the model is 

effectively learning and improving. Consistent decreases in loss suggest good convergence, while erratic fluctuations or 

constant loss may signal issues such as inadequate training, improper learning rates, or overfitting. Comparing training and 

validation loss helps assess the model’s performance and generalization ability. These results indicate that the model can 

accurately detect boxes and masks. The model’s performance is also relatively consistent across all classes, with no major 

differences in accuracy. 

 

 

 
                                                             (a)                                  (b)                                (c) 

 

Figure 7: Predicted Sample of YOLOv8 Model (a) Cyst, (b) Stone, (c) Tumour 

 

Figure 7 shows the predicted sample of the YOLOv8 Model. The model performs better on mask detection than on box 

detection. This may be because the model can learn more discriminative features for masks than for boxes. Masks are typically 

more fine-grained than boxes, and they can provide more information about the shape and appearance of the object being 

detected. The results suggest that early stopping can be an effective way to prevent overfitting in object detection models. In 

this study, the model achieved its best performance at 200 epochs. Training the model for longer did not improve the model’s 

performance, leading to a decrease in performance on the validation dataset. This suggests that the model started to overfit the 

training data after 200 epochs. 

 

5. Conclusion 

 

The YOLOv8 model, trained on a CT scan dataset with the AdamW optimizer, demonstrates robust performance in detecting 

renal cysts, stones, and tumours. Using a learning rate of 0.001429 and a batch size 16, the model was trained for up to 200 

epochs, achieving high precision and recall values, with precision up to 0.986 and recall up to 0.969. The model showed 

significant improvement across epochs, with the best performance metrics, including mAP50 reaching 0.989 and mAP50-95 

up to 0.972, observed at 200 epochs. Among the different YOLOv8 versions, the “Nano” model offered an optimal balance 

between speed and accuracy, making it suitable for real-time applications. The confusion matrix reveals strong detection 

accuracy for cysts, stones, and tumours, though minor misclassifications suggest areas for further refinement. Performance 

curves indicate the model’s reliability and effectiveness in detection, while the loss curve demonstrates effective learning and 

convergence. Overall, YOLOv8 provides a highly effective and efficient solution for renal anomaly detection, with the “Nano” 

model emerging as a particularly advantageous option for practical use. 
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